Secondary 3 Honors	
Notes 12-3: Polar Graph	S

Name:	
	Period:

There are 4 types of polar graphs:

1. Circles

Equations:

How are circles with $r = a \sin \theta$ different from circles with $r = a \cos \theta$?

enters are on different gives.

2. Limaçon Curves

There are four types of Limaçon curves. Although the general equation is the same, what changes the shape of the Limaçon is the relationship between a and b, specifically $\frac{a}{b}$. Sketch the graphs of each equation below. Then determine how a and b are related in each type of equation. Use the window [-2, 10] by [-5, 5]

Equations: $r = a \pm b \cos \theta$

r= a=bsino

3. Rose Curves

r=asinno or r=acosno Equations:

The shape of the rose curve depends on the value of n

r= acosno · n petals

· symm. to X-axis

nis odd r=asinno

·n petals

· symm. to y-axis

r=251050 n=5 Spetals

4. Lemniscates

 $r^2 = q^2 \sin n \omega$ 150 Equations:

 $r^2 = a^2 \cos ho$

r2= 16 cos20 => r= 1600520

How are circles with $r^2 = a^2 \sin 2\theta$ different from circles with $r^2 = a^2 \cos 2\theta$? graph.

axis of symmetry

Without using your calculator, match the polar equation with its graph. Explain your choice.

- 1. $r = 4 \sin \theta$ equation of circle, diameter=4
- 2. $r = 4 \sin 3\theta$ n=3 3 petals symm. to y-axis
- 3. $r = 3 3 \sin \theta$ a = | cardioid.
- 4. $r = 3 \sin 4\theta$ n=4 8 petals
- 5. $r = 2 1.5 \sin \theta$ $\frac{a}{b} = \sqrt{\frac{2}{1.5}} < 2$ (mach

What will $r = 3 \cos 2\theta$ look like?

Rose curve. symm. to
4 petals. y-axis, x-axis,
2 lana origin.

