Secondary 3H: 6-4 Notes: Properties of Logarithmic Functions

Warm-up:

WITHOUT USING A CALCULATOR, Place each expression on the number line. You may need to estimate.

Properties of Logarithms

Logarithms and Exponents have corresponding properties! To figure out the properties of logarithms, we can use the properties of exponents.

- Remember that $log_b b^k = k$
- Let $x = log_b m$ and $y = log_b n$
 - What does m equal?
 - o What does n equal?
 - o Find $mn = (b^x)(b^y) = b^{x+y}$
 - $\circ \text{ Find } \frac{m}{n} = \frac{b^{x}}{b^{y}} = b^{x-y}$

THREE LOGARITHM PROPERTIES

- Product Property: $log_b mn = log_b m + log_b n$
- Quotient Property: $\log_b \frac{m}{n} = \log_b m \log_b n$
- Power Property: $log_b m^n = \underline{n} log_b m$

Simplifying

- $log_{4}32 = log_{4}2$ $log_{4}\frac{32}{2} = log_{4}lo = 2$
- $6\log_2 x + 5\log_2 y$ $\log_2 x^{5} + \log_2 y^{5}$ $\log_2 x^{6} y^{5}$

Your Turn!!

- $log_45x + log_43x$ $log_4(5X)(3X) = log_4 | 5x^2$
- $2log_46 log_49$ $log_46^2 - log_49$ $log_436 - log_49$ $log_4 = log_44 = 1$

•
$$log_b \left(\frac{x^4}{729}\right) = log_b x^4 - log_b 729$$

 $4 log_b x - log_b 729$

•
$$log \frac{4x}{y} \leftarrow log \frac{4x}{\sqrt{\log 4 + \log x - \log y}}$$

Your Turn!

•
$$log_3\left(\frac{250}{37}\right) = \left(09_3 250 - \log_3 37\right)$$

•
$$log_{3}7(2x-3)^{2}$$
 = $log_{3}7 + log_{3}(2x-3)^{2}$ $log_{3}7 + 2log_{3}(2x-3)$

Change of Base

Unless you have a fancy calculator, it will only use log base 10. So we can use the following formula to evaluate a logarithm with any base.

$$log_b m = \frac{log_c m}{log_c b}$$
 basement

Two Methods to solve

What is the value of log_{81} 27

Method 1: Use a common base!

(But...this requires a little more work)

$$81^{x} = 27$$
 $(34)^{x} = 3^{3}$

$$4x = 3$$

 $x = 3/4$

Method 2: Use a calculator.

$$1098127 = 10927$$

Your Turn!

Find the value of each expression using whichever method you prefer.

•
$$log_832$$
 log_832 lo

•
$$log_{12}20$$
 log_{20} OR $l2^{k} = 20$ NOT EAST! $k=1.21$

pH levels

The pH of a substance equals $-log[H^+]$, where $[H^+]$ is the concentration of hydrogen ions. $[H^+_a]$ for household ammonia is 10^{-11} . $[H^+_v]$ for vinegar is 6.3×10^{-3} . What is the <u>difference</u> for pH levels of ammonia and vinegar?

vinegar?
$$-\log(H^{\dagger}a) - (-\log(H^{\dagger}v))$$

 $-\log(167) + \log(6.3 \times 10^{-3})$
 $11 \log 10 + \log 6.3 + \log 10^{-3}$
 $11 \log 10 + \log 6.3 - 3 \log 10$
 $8 \log 10 + \log 6.3$
 $8 + \log 6.3 = 8 + 0.8 = 8.8$

Your Turn

The concentration of hydrogen ions in household dish detergent is 10^{-12} . What is the pH level of household dish detergent?

$$= -\log(10^{-12})$$

$$= 12 \log 10$$

$$12(1)$$

$$= 12$$