Secondary 3H 6-5 Notes: Solving Exponential and Logarithmic Equations

Determine if each expression is true or false. Justify your answer.

TRYE
$$\log_{12} = \log_{4} + \log_{3}$$
 $\log_{5} = \frac{\log_{3}}{\log_{5}}$ FALSE $\log_{12} = \log_{12} (4x3)$ $\log_{3} = \log_{3} = \log_{3}$

YOU'RE A WINNER!

• You are the winner of a very special TV game show! You are given the choice of one of two prizes:

y=100 X 1) \$100 a week

2) \$1 this week, \$2 next week, \$4 the third week, and so on (so that the amount you receive $y=2^{x-1}$ doubles every week).

• Which prize would you choose and why?

• At week 7, which prize is better?
$$y=100(7)$$
 $y=100(7)$ $y=100(20)$ $y=100(20)$

How long will it take each prize to reach \$1,000,000?

When two numbers in an exponential equation have common bases, we can find the answer easily.

• What is the solution to
$$16^{3x} = 8$$
?
 $(2^4)^{3x} = 2^3$
 $|2x = 3|$
 $|2x = 3|$

But what if the bases are NOT common?
$$\log (15^{3x}) = (285)$$
 $\log |5| = (09285)$
 $3x (0915) = (09285)$
 $\log |5| = (09285)$

Your Turn!
•
$$5-3^{x} = -40$$

• $5^{x} = -45$
• $3^{x} = 45$
 $3^{x} = 45$

Does this apply to our prize money?

$$1,000,000 = 100x$$

$$1,000,000 = 2^x$$

Resource Management

Wood is a sustainable, renewable, natural resource when you manage forests properly. Your lumber company has 1,200,000 trees. You plan to harvest 7% of the trees each year. II harvest 7% of the trees each year. How many years will it take to harvest half of the trees?

y= a(1+r)t 4= 600,000

Use a graph to make a prediction and then check your prediction using logarithms.

$$(1-0.07)^{t}$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,000)$$

$$(9.55,1000,00$$

Group Work

How do we solve logarithms?

As a group, come up with a plan to solve the following equation. See if your plan actually works. 1) Get a

- OFIND base of log.
- 2) change Log > exp.
- 3) simplify exp.
- 4) Add like terms
- 5) Fet x by itself by opposite operations
- Denjoy your x!
- 7) check your answer

- $\log(4x 3) = 2$
 - (x-3) = 2 $|0^2 \Rightarrow |00| = 4x-3 \quad \text{that graphs}$ $+3 \quad +3 \quad 2 \quad \text{Turn it on}.$

 - $\frac{103-40}{4}$ 3 4= 4 $y_1=2$ $y_2=(09(4x-3))$
 - 9 checker (b) Graph Track
 - 5: Intersect

Does our plan always work?

 $\log(5-2x) = 0$

- How can Logarithmic Properties help?
 - $\log(x-3) + \log(x) = 1$ $\log(x(x-3))=1$

$$(09(x^2-3x)=1$$

$$10^{1} = \chi^{2} - 3\chi$$

$$0 = \chi^2 - 3\chi - 10$$

$$0 = (x-5)(x+2)$$