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9-5 Notes: Law of Cosines and Area of a Triangle

Notes

LAW OF COSINES

Consider the triangle AABC. From vertex C, altitude
k is drawn and separates side ¢ into segments x and
¢ — x. Why can the segments be written this way?
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The altitude separates AABC into two right
triangles. Use the Pythagorean Theorem to
write two equations, one relating k, 5, and
¢ — x, and another relating g, k, and x.
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2. Notice that both equations contain k?. Solve each equation for k2.

k_’l.: b2_. CC_X)Z. \(_2': C\‘J._XJZ.

Since both of the equations in Question 2 are equal to k?, they can be set equal to each
other. Set them equal to each other to form a new equation.

b — (c=x) = a™x*

Notice that the equation in Question 3 involves x. However, x is not a side of AABC. As a
result, we will attempt to rewrite the equation-i ion 3 so that it does not include x.

Begin by expanding (¢ — x)2. bz . (CZ—ZCX +X2) = Qz__ XZ

e-X)(c~xX)
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Solve the equation in Question 4 for b?.
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6. The equation in Question 5 still involves x. To eliminate x from the equation, we will
attempt to substitute an equivalent expression for x. Write an equation involving both
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cosB and x. Why use cosB* C,O':B%* )ai,
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7. Solve the equatioh from Question 6 for x. Why solve for x? y‘Q,PMCQ) .
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8. Substitute the equivalent expression for x into the equation from Question 5. They

resulting equation contains only sides and angles of AABC. This equation is called the
Law of Cosines.
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9. Using a similar method, two other forms of this law could be developed for a? and c?.
Based on your work from Questions 1-8, write two other forms of the Law of Cosines for

AABC.
o= = b+ cF—2be cosA

= ary\vo —2ab cosC.

Examples: Use the Law of Cosines. Find the length of x to the nearest tenth.
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The sailboat race committee wants to lay out a triangular course with 40° angle between two
sides that measure 3.5 miles and 2.5 miles. What will be the approximate length of the third side?
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Use both the Law of Cosines and the Law of Sines to solve for the missing information.
Round your answer to the nearest tenth.
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In the triangle to the right, / represents the length of the altitude C

to side ¢ in AABC. You can use this expression for the height of
the triangle to develop a formula of the area of a triangle.

1. Start with the area formula for any triangle. Then replace
values with what you know from the provided triangle.
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|
Aa = ’ich

A 5 B

2. Replace h with a trigonometric formula like in Law of Cosines.

Sing =-2- h=asiNB
3. Simplify.

A= -'iqcs'm%

4. Using the equation in Question 3, we can develop the equivalent expressions for Area of

a Triangle involving £A and £B. (These formulas only work when you have a
triangle gi '
An= L+ aband
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