9-5 Notes: Law of Cosines and Area of a Triangle

Notes

LAW OF COSINES

Consider the triangle $\triangle ABC$. From vertex C, altitude k is drawn and separates side c into segments x and c - x. Why can the segments be written this way?

$$C-X+X=C$$

1. The altitude separates $\triangle ABC$ into two right $a^2+b^2=c^2$ triangles. Use the Pythagorean Theorem to write two equations, one relating k, b, and c - x, and another relating a, k, and x.

$$k^2 + (c - x)^2 = b^2$$

$$x^2 + k^2 = 9^2$$

2. Notice that both equations contain k^2 . Solve each equation for k^2 .

$$k^2 = b^2 - (c - x)^2$$
 $k^2 = a^2 - x^2$

$$k^2 = q^2 - \chi^2$$

3. Since both of the equations in Question 2 are equal to k^2 , they can be set equal to each other. Set them equal to each other to form a new equation.

$$b^{2}-(c-x)^{2}=a^{2}-x^{2}$$

4. Notice that the equation in Question 3 involves x. However, x is not a side of $\triangle ABC$. As a result, we will attempt to rewrite the equation in Question 3 so that it does not include x. Begin by expanding $(c - x)^2$.

$$(c-x)(c-x)$$

$$c^2-cx-cx+x^2$$

$$c^2 - 2cx + x^2$$

Begin by expanding
$$(c-x)^2$$
.
 $(c-x)(c-x)$

$$c^2-cx-cx+x^2$$

$$c^2-2cx+x^2$$

$$b^2-c^2+2cx+x^2=a^2-x^2$$

$$+x^2+x^2$$

$$b^2-c^2+2cx=q^2$$

5. Solve the equation in Question 4 for b^2 .

$$b^{2} + c^{2} + 2cx = q^{2}$$

$$+c^{2} - 2cx + c^{2}$$

$$-2cx$$

$$b^{2} = q^{2} + c^{2} - 7cx$$

6. The equation in Question 5 still involves x. To eliminate x from the equation, we will attempt to substitute an equivalent expression for x. Write an equation involving both cosB and x. Why use cosB?

7. Solve the equation from Question 6 for x. Why solve for x? rep 90 &.

8. Substitute the equivalent expression for x into the equation from Question 5. They resulting equation contains only sides and angles of $\triangle ABC$. This equation is called the

Law of Cosines.
$$b^2 = a^2 + c^2 - 2ac\cos B$$

9. Using a similar method, two other forms of this law could be developed for a^2 and c^2 . Based on your work from Questions 1-8, write two other forms of the Law of Cosines for $\triangle ABC$.

$$a^2 = b^2 + c^2 - 2bc \cos A$$

 $c^2 = a^2 + b^2 - 2ab \cos C$

Examples: Use the Law of Cosines. Find the length of x to the nearest tenth.

The sailboat race committee wants to lay out a triangular course with 40° angle between two sides that measure 3.5 miles and 2.5 miles. What will be the approximate length of the third side?

$$x^{2} = (3.5)^{2} + (2.5)^{2} - 2(3.5)(2.5)\cos 40^{\circ}$$

 $x^{2} = 18.5 - 13.4058$
 $x^{2} = 15.0942$
 $x^{2} = 2.3 \text{ miles}$

Use both the Law of Cosines and the Law of Sines to solve for the missing information. Round your answer to the nearest tenth.

a = 23.582 $a^2 = 60^2 + 68^2 - 2(60)(68) \cos 20^\circ$ $a^2 = 8224 - 7667.8918$ $a^2 = 556.1082$ a = 23.582 a = 23.582

In the triangle to the right, h represents the length of the altitude to side c in $\triangle ABC$. You can use this expression for the height of the triangle to develop a formula of the area of a triangle.

1. Start with the area formula for any triangle. Then replace values with what you know from the provided triangle.

$$A_{\Delta} = \frac{1}{2}bh$$

$$A_{\Delta} = \frac{1}{2}ch$$

2. Replace *h* with a trigonometric formula like in Law of Cosines.

4. Using the equation in Question 3, we can develop the equivalent expressions for Area of a Triangle involving $\angle A$ and $\angle B$. (These formulas only work when you have a triangle given SAS)