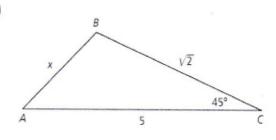
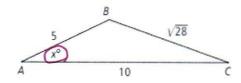

11.6 Law of Cosines

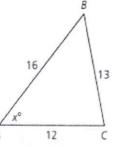

Practice

Use the Law of Cosines. Find length x to the nearest tenth.

1)

2)


$$x^{2} = 8^{2} + 10^{2} - 2(8)(10)\cos 100^{\circ}$$


$$x^{2} = 104 - 100\cos 100^{\circ}$$

$$x^{2} = 84$$

$$x = 9.2$$

Use the Law of Cosines. Find measure x to the nearest degree.

$$(\sqrt{28})^2 = 5^2 + 10^2 - 2(5)(10) \omega SX$$

 $28 = 125 - 100 \omega SX$
 $-97 = -100 \omega SX$

$$\frac{28}{-125} = |25 - 100 \cos x$$

$$\frac{-97}{-100} = -100 \cos x$$

 $0.97 = 66 \times \times = 600 \times$

6)

$$79^{2} = 32^{2} + 86^{2} - 2(32)(86) \cos 6$$

$$6241 = 8420 - 5504 \cos 6$$

$$-8420 - 8420 - 5504 \cos 6$$

$$-2179 = -5504 \cos 6$$

$$-5504 - 5504 \cos 6$$

$$6 = 66$$

In $\triangle ABC$, a = 3 ft, b = 2.9 ft, and c = 4.6 ft. Find $m \angle C$.

In
$$\triangle XYZ$$
, $x = 4$ cm, $y = 7$ cm, and $z = 10$ cm. Find $m \angle X$.

$$4^2 = 7^2 + 10^2 - 2(7)(10) \cos X$$

$$16 = 149 - 140 \cos X$$

$$-149^2 - 149 \cos X$$

Use the Law of Cosines and the Law of Sines. Find measure x to the nearest tenth.

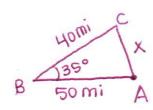
$$\frac{16^{\circ}}{4}$$
 $\frac{9}{x^{\circ}}$ z

9) In $\triangle FGH$, f = 7 yd, g = 22 yd, and $m \angle H = 85^{\circ}$. Find $m \angle F$

Tyd
$$h^2 = 7^2 + 22^2 - 2(7)(22)00585$$

$$h^2 = 533 - 30800585$$

$$h^2 = 506.156 \longrightarrow h = 22.498$$


$$\frac{\sin 85}{22.498} = \frac{\sin F}{7}$$

$$\sin F = \frac{7 \sin 85}{22.498}$$

$$F = \sin^{-1} \left(\frac{7 \sin 85}{22.498}\right) = \frac{18.1^{\circ}}{18.1^{\circ}}$$

10) The sides of a triangular lot are 158 ft, 173 ft, and 191 ft. Find the measure of the angle opposite the longest side to the nearest tenth of a degree.

11) A car travels 50 miles due west from point A. At point B, the car turns and travels at an angle of 35° north of due east. The car travles in this direction for 40 miles, to point C. How far is point C from Point A?

$$x^{2}=50^{2}+40^{2}-2(50)(40)00535^{\circ}$$

 $x^{2}=4100-40000535^{\circ}$
 $x^{2}=823.39$
 $x=28.7 \text{ mi}$

12) In $\triangle ABC$, $m \angle A = 81.4^{\circ}$, b = 4.8, and c = 7.2. Use the Law of Cosines to find a and then use the Law of Sines to find the measure of angles B and C. Round to the nearest tenth.

Your classmate says that this triangle does not exist. You say that it does. Who is correct? Explain.

Verify the following identities.

13
$$\left| \csc x \sec x - \cot x \right| = \tan x$$
 $\left| \frac{1}{\sin x} \cdot \frac{1}{\cos x} - \frac{\cos x}{\sin x} \right|$
 $\left| \frac{1}{\sin x \cos x} - \frac{\cos x}{\sin x} \cdot \frac{\cos x}{\cos x} \right|$

Need common denominator

 $\left| \frac{1}{\sin x \cos x} - \frac{\cos x}{\sin x} \right|$
 $\left| \frac{1}{\sin x \cos x} - \frac{\cos x}{\cos x} \right|$
 $\left| \frac{1}{\sin x \cos x} - \frac{\cos x}{\sin x} \right|$
 $\left| \frac{1}{\sin x \cos x} - \frac{\cos x}{\cos x} \right|$
 $\left| \frac{1}{\sin x \cos x} - \frac{\cos x}{\cos x} \right|$
 $\left| \frac{1}{\sin x \cos x} - \frac{\cos x}{\sin x \cos x} \right|$
 $\left| \frac{1}{\sin x \cos x} - \frac{\cos x}{\sin x \cos x} \right|$
 $\left| \frac{1}{\sin x \cos x} - \frac{\cos x}{\sin x \cos x} \right|$
 $\left| \frac{1}{\sin x \cos x} - \frac{\cos x}{\sin x \cos x} \right|$
 $\left| \frac{1}{\sin x \cos x} - \frac{\cos x}{\sin x \cos x} \right|$
 $\left| \frac{1}{\sin x \cos x} - \frac{\cos x}{\sin x \cos x} - \frac{\cos x}{\cos x} \right|$
 $\left| \frac{1}{\sin x \cos x} - \frac{\cos x}{\sin x \cos x} - \frac{\cos x}{\cos x} \right|$
 $\left| \frac{1}{\sin x \cos x} - \frac{\cos x}{\sin x \cos x} - \frac{\cos x}{\cos x} \right|$
 $\left| \frac{1}{\sin x \cos x} - \frac{\cos x}{\cos x} - \frac{\cos x}{\cos x} - \frac{\cos x}{\cos x} \right|$
 $\left| \frac{1}{\sin x \cos x} - \frac{\cos x}{\cos x} - \frac{\cos x}$

$$14) \cos\left(\frac{\pi}{2} - x\right) = \sin x$$

15)
$$\sin 2x \cos x \ominus \cos 2x \sin x = \sin x$$

Sum difference identity
Sin $(2X - X)$

16)
$$\frac{\cos x}{1+\sin x} + \frac{1-\sin x}{\cos x} = \frac{2\cos x}{1+\sin x}$$