1. Write the ratio of the six trigonometric functions of the angle θ . SoH CAH TOA

$$\sin \theta = 4|5$$
 $\csc \theta = 5|4$

$$\csc\theta = 5/4$$

$$\cos \theta = 3/5$$
 $\sec \theta = 5/3$
 $\tan \theta = 4/3$ $\cot \theta = 3/4$

$$\sec \theta = 5/3$$

$$\tan \theta = 4$$

$$\cot \theta = 3/4$$

2. You are standing 25 feet from the foot of tree, the angle of elevation to the top of the tree is 32°. Find the height of the tree to the nearest foot.

$$tan32^{\circ} = \frac{x}{25}$$

x= 25 tan32°

3. Convert the following from degrees to radians or from radians to degrees.

a.
$$200^{\circ} \cdot \frac{\pi}{180^{\circ}} = \frac{10\pi}{9}$$

d.
$$\frac{8\pi}{9} \cdot \frac{180^{\circ}}{\pi} = 160^{\circ}$$

e.
$$\frac{6\pi}{4} \cdot \frac{180^{\circ}}{16} = 270^{\circ}$$

f.
$$\frac{5\pi}{3} \cdot \frac{190^{\circ}}{\pi} = 300^{\circ}$$

4. Fill in the missing values on the unit circle **AND** then evaluate the functions without using a calculator.

a.
$$\sin \frac{7\pi}{6} = \frac{1\pi}{6} = \frac{1}{6} = \frac{1}{6}$$

$$0$$
 = T_{6}

b.
$$\cos \frac{7\pi}{6}$$
 Q II (-

$$COS\frac{7\pi}{L} = -\frac{\sqrt{3}}{2}$$

c.
$$\sin \frac{2\pi}{3} = 2\pi/3$$

c.
$$\sin \frac{2\pi}{3} = 2\pi/3$$
 $\Theta' = \pi/3$ $\Theta' = \pi/3$ $\sin \pi/3 = \sqrt{3}$ $\sin \pi/3 = \sqrt{3}$ $\sin \pi/3 = \sqrt{3}$

d.
$$\cos \frac{5\pi}{4} = \frac{5\pi}{4} = \frac{7\pi}{4} = \frac{7\pi$$

Graph the following functions by hand. Find the amplitude, period, domain and range for each.

5. Graph two full periods of $y = 4 \tan x$

amp: none

D: 911 X; X = = +nT R: (-0,0)

7. Graph two full period of $y = \sin(x + \pi) + 5$

amp: 1 per: 2TL

 $D: (-\infty, \infty)$ R: [4,6]

8. Graph two full periods of $y = \csc x$

amp: None per: 2TC

D: all X, X + O+NTC R: (-0,-]V[,0)

9. Graph two full periods of $y = \sec x$

amp: None per: 2TC

D: all X; X = 1 + nTC R: (-0,-1) V[1,0)

10. Graph two full periods of $y = \cot x$

amp: None per: TC

D: 911 X ; X = 0+ 17 T R: (-00,00)

11. Label each of the graphs with their equation.

CHALLENGE PROBLEMS!!!!!

- 12. At the Delaware State Fair, there is a Ferris wheel with a 24 meter diameter. The center of the Ferris wheel is 15 meters off the ground. The Ferris wheel completes one rotation in 48 seconds. $48 = \frac{2\pi}{100}$
- a) Write an equation to model the height of a rider on this Ferris wheel h at any time t, where t=0 is when the rider is at the position on the Ferris wheel farthest to the right.

$$b = \frac{2\pi}{48}$$

radius=amp=12 $y = |2 \sin(\frac{2\pi}{48}t) + |5|$

b) Revise your equation so that t = 0 when the rider is at the bottom of the Ferris wheel.

$$y = 12 \sin(\frac{2\pi}{48}t + \frac{3\pi}{2}) + 15$$

c) What is the height of the rider at 42 seconds?

t-42 seconds
(use original equation)

$$y = 12 \sin(2\pi / 42) + 15$$

 $y = 6.51$ meters

13. San Francisco Bay is an inlet of the Pacific Ocean. At a dock, the depth of the water is 3 feet at low tide and 71 feet at high tide, 4 hours later. Draw a graph showing the depth of the water and write a function that

models the water's depth at any time *t*.

midline is half-way between high point and low point.

$$\frac{71-3}{2} = 34 \text{ (amplitude)}$$

Then move up 3 to account for low tide at 3.

34+3=37 (centerline)

8 hours to complete one wave

$$8 = \frac{2\pi}{b}$$

$$b = \frac{2\pi}{8}$$

one equation might be: $y = -34\cos\frac{2\pi}{8}(t) + 37$ this is NOT the only equation!!

FRONT

$$C=2\pi r$$
 $C=2\pi r$
 $C=2\pi r$

b) If the tractor travels 6,336,000 inches (100 miles), how many times does each tire rotate?

FRONT

6336000 = 56,022.54

rotations

c) How many *more times* does the front tire rotate than the back tire?