Practice 5.1

Multiplying and Dividing Radical Expressions

Multiply, if possible. Then simplify. To start, identify the index of each radical.

2. $\sqrt{5} \cdot \sqrt{8}$ **1.** $\sqrt[3]{4} \cdot \sqrt[3]{6}$ **3.** $\sqrt[3]{6} \cdot \sqrt[4]{9}$

Simplify. Assume all variables are positive. To start, change the radicand to factors with the necessary exponent.

4. $\sqrt[3]{27x^6}$ 6. $\sqrt[5]{128x^2y^{25}}$ 5. $\sqrt{48x^3y^4}$

Multiply and simplify. Assume all variables are positive.

8. $\sqrt[4]{7x^6} \cdot \sqrt[4]{32x^2}$ **9.** $2\sqrt[3]{6x^4y} \cdot 3\sqrt[3]{9x^5y^2}$ **7.** $\sqrt{12} \cdot \sqrt{3}$

Simplify each expression. Assume all variables are positive.

11. $5\sqrt{2xy^6} \cdot 2\sqrt{2x^3y}$ **12.** $\sqrt{5}(\sqrt{5} + \sqrt{15})$ **10.** $\sqrt[3]{4} \cdot \sqrt[3]{80}$

13. Error Analysis Your classmate simplified $\sqrt{5x^3} \cdot \sqrt[3]{5xy^2}$ to $5x^2y$. What mistake did she make? What is the correct answer?

14. A square rug has sides measuring $\sqrt[3]{16}$ ft by $\sqrt[3]{16}$ ft. What is the area of the rug?

Class Date

Practice (continued)

Multiplying and Dividing Radical Expressions

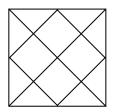
Divide and simplify. Assume all variables are positive. To start, write the quotient of roots as a root of a quotient.

15.
$$\frac{\sqrt{36x^6}}{\sqrt{9x^4}}$$
 16. $\frac{\sqrt[4]{405x^8y^2}}{\sqrt[4]{5x^3y^2}}$ **17.** $\frac{\sqrt[3]{75x^7y^2}}{\sqrt[3]{25x^4}}$

Rationalize the denominator of each quotient. Assume all variables are positive. To start, multiply the numerator and denominator by the appropriate radical expression to eliminate the radical.

18. $\frac{\sqrt{26}}{\sqrt{3}}$	19. $\frac{\sqrt[3]{x}}{\sqrt[3]{2}}$	$20. \ \frac{\sqrt{7x^4y}}{\sqrt{5xy}}$

- **21.** Einstein's famous formula $E = mc^2$ relates energy *E*, mass *m*, and the speed of light *c*. Solve the formula for *c*. Rationalize the denominator.
- **22.** The formula $h = 16t^2$ is used to measure the time *t* it takes for an object to free fall from height h. If an object falls from a height of $h = 18a^5$ ft, how long did it take for the object to fall in terms of *a*?


Practice 5.2

Binomial Radical Expressions

Simplify if possible. To start, determine if the expressions contain like radicals.

2. $8\sqrt[3]{4} - 6\sqrt[3]{4}$ **1.** $3\sqrt{5} + 4\sqrt{5}$ **3.** $2\sqrt{xy} + 2\sqrt{y}$

4. A floor tile is made up of smaller squares. Each square measures 3 in. on each side. Find the perimeter of the floor tile.

Simplify. To start, factor each radicand.

5. $\sqrt{16} + \sqrt{52}$ 6. $\sqrt{524} - \sqrt{2500}$ 7. $\sqrt{192} + \sqrt{24}$	5. $\sqrt{18} + \sqrt{32}$	6. $\sqrt[4]{324} - \sqrt[4]{2500}$	7. $\sqrt[3]{192} + \sqrt[3]{24}$
---	-----------------------------------	-------------------------------------	--

Multiply.

8.
$$(3-\sqrt{6})(2-\sqrt{6})$$
 9. $(5+\sqrt{5})(1-\sqrt{5})$ **10.** $(4+\sqrt{7})^2$

Multiply each pair of conjugates.

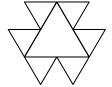
11.
$$(7-\sqrt{2})(7+\sqrt{2})$$
 12. $(1+3\sqrt{3})(1-3\sqrt{3})$ **13.** $(6+4\sqrt{7})(6-4\sqrt{7})$

Name	Class	Date	
Practice (continued)			
Binomial Radical Expressions			

Rationalize each denominator. Simplify the answer.

14.
$$\frac{3}{2+\sqrt{6}}$$
 15. $\frac{7+\sqrt{5}}{6-\sqrt{5}}$ **16.** $\frac{1-2\sqrt{10}}{4+\sqrt{10}}$

17. A section of mosaic tile wall has the design shown at the right. The design is made up of equilateral triangles. Each side of the large triangle is 4 in. and each side of a small triangle is 2 in. Find the total area of the design to the nearest tenth of an inch.


Simplify. Assume that all variables are positive.

18.
$$\sqrt{45} - \sqrt{80} + \sqrt{245}$$
 19. $(2 - \sqrt{98})(3 + \sqrt{18})$ **20.** $6\sqrt{192xy^2 + 4\sqrt{3xy^2}}$

21. Error Analysis A classmate simplified the expression $\frac{1}{1-\sqrt{2}}$ using the steps shown. What mistake did your classmate make? What is the correct answer?

$$\frac{1}{1-\sqrt{2}} \cdot \frac{1-\sqrt{2}}{1-\sqrt{2}}$$
$$= \frac{1-\sqrt{2}}{1-2} = \frac{1-\sqrt{2}}{-1} = -1 + \sqrt{2}$$

22. Writing Explain the first step in simplifying $\sqrt{405} + \sqrt{80} - \sqrt{5}$.

,2

Secondary 3 Honors Practice 5.3—Rational Exponents

Simplify each expression.

1.
$$16^{\frac{1}{4}}$$

2. $\sqrt[3]{32}$
3. $5^{\frac{1}{2}} \cdot 45^{\frac{1}{2}}$
4. $\sqrt{(xy)^3} \div \sqrt[6]{xy}$
5. $(-3)^{\frac{1}{3}} \cdot (-3)^{\frac{1}{3}}$
6. $\sqrt[4]{a^5} \times \sqrt{a^5}$

Write each equation in radical form.

7.
$$x^{\frac{1}{4}}$$
 8. $x^{\frac{4}{5}}$ **9.** $x^{\frac{2}{9}}$

Write each expression in exponential form.

10.
$$\sqrt[3]{2}$$
 11. $\sqrt[3]{2x^2}$ **12.** $\sqrt[3]{(2x)^2}$

- Bone loss for astronauts may be prevented with an apparatus that rotates to simulate gravity. In the formula $N = \frac{a^{0.5}}{2\pi r^{0.5}}$, N is the rate of rotation in revolutions per second, a is the simulated acceleration in m/s^2 , and r is the radius of the apparatus in meters. How fast would an apparatus with the following radii have to rotate to simulate the acceleration of 9.8 m/s² that is due to Earth's gravity?
 - **a.** $r = 1.7 \, \text{m}$

b.
$$r = 3.6 \,\mathrm{m}$$

c.
$$r = 5.2 \,\mathrm{m}$$

d. Reasoning Would an apparatus with radius 0.8 m need to spin faster or slower than the one in part (a)?

Simplify each number.

14.
$$(-216)^{\frac{1}{3}}$$
 15. $243^{1.2}$ **16.** $32^{-0.4}$

Find each product or quotient. To start, rewrite the expression using exponents.

18. $\frac{\sqrt[5]{x^2}}{\sqrt[10]{r^2}}$ **19.** $\sqrt{20} \cdot \sqrt[3]{135}$ 17. $(\sqrt[4]{6})(\sqrt[3]{6})$

Simplify each number.

21. $(216)^{\frac{2}{3}}(216)^{\frac{2}{3}}$ **22.** $(-243)^{\frac{2}{5}}$ **20.** $(125)^{\frac{2}{3}}$

Write each expression in simplest form. Assume all variables are positive.

23.
$$(16x^{-8})^{-\frac{3}{4}}$$
 24. $(8x^{15})^{-\frac{1}{3}}$ **25.** $\left(\frac{x^2}{x^{-10}}\right)^{\frac{1}{3}}$

26. Error Analysis. Explain why the following simplification is incorrect. What is the correct simplification?

$$5\left(4-5^{\frac{1}{2}}\right)$$
$$= 5(4) - 5\left(5^{\frac{1}{2}}\right) = 20 - 25^{\frac{1}{2}} = 15$$

REVIEW

27. Expand the binomial.

$$(2x+3)^{6}$$

28. Find the specified term of the binomial expansion.

Seventh term of

$$(x+7)^9$$

Practice 5.4		Form K
Solving Square Root ar	nd Other Radical Equations	
Solve. To start, rewrite th	e equation to isolate the radical.	
1. $\sqrt{x+2} - 2 = 0$	2. $\sqrt{2x+3}-7=0$	3. $2 + \sqrt{3x - 2} = 6$
$\sqrt{x+2} = 2$		
Solve.		

Name

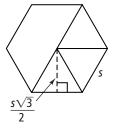
_____ Class _____ Date _____

- **4.** $2(x-2)^{\frac{2}{3}} = 50$ **5.** $2(x+3)^{\frac{3}{2}} = 54$ **6.** $(6x-5)^{\frac{1}{3}} + 3 = -2$
- **7.** The formula $d = 2\sqrt{\frac{V}{\pi h}}$ relates the diameter *d*, in units, of a cylinder to its volume *V*, in cubic units, and its height *h*, in units. A cylindrical can has a diameter of 3 in. and a height of 4 in. What is the volume of the can to the nearest cubic inch?
- **8. Writing** Explain the difference between a radical equation and a polynomial equation.
- **9. Reasoning** If you are solving $4(x + 3)^{\frac{3}{4}} = 7$, do you need to use the absolute value to solve for *x*? Why or why not?

Name	Class	Date

Practice (continued)

Solving Square Root and Other Radical Equations


Solve. Check for extraneous solutions. First, isolate a radical, then square each side of the equation.

10. $\sqrt{4x+5} = x+2$ $(\sqrt{4x+5})^2 = (x+2)^2$ **11.** $\sqrt{-3x-5} - 3 = x$ **12.** $\sqrt{x+7} + 5 = x$

13.
$$\sqrt{2x-7} = \sqrt{x+2}$$

 $(\sqrt{2x-7})^2 = (\sqrt{x+2})^2$
14. $\sqrt{3x+2} - \sqrt{2x+7} = 0$
15. $\sqrt{2x+4} - 2 = \sqrt{x}$

- **16.** Find the solutions of $\sqrt{x+2} = x$.
 - **a.** Are there any extraneous solutions?
 - **b. Reasoning** How do you know the answer to part (a)?

17. A floor is made up of hexagon-shaped tiles. Each hexagon tile has an area of 1497 cm². What is the length of each side of the hexagon? (*Hint:* Six equilateral triangles make one hexagon.)

